If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+120x-171=0
a = 4; b = 120; c = -171;
Δ = b2-4ac
Δ = 1202-4·4·(-171)
Δ = 17136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17136}=\sqrt{144*119}=\sqrt{144}*\sqrt{119}=12\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-12\sqrt{119}}{2*4}=\frac{-120-12\sqrt{119}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+12\sqrt{119}}{2*4}=\frac{-120+12\sqrt{119}}{8} $
| 2x+10/2=5/2x | | 2(-11/6)+3x=4 | | 11s-7=12s-8 | | 4x-6+3x=7x-6x | | 9(2-3x)-29=8x-23 | | 6(3x-8)-7x=25 | | 4x-6+3=7x-6 | | 5+3=2(8x+-4) | | 11x+8=10x+7 | | 6x+2-10x=0 | | 2-(1-3x)=22-3(x-13) | | 50-5x+25x=140-25x+25x | | -43=-5(6-4x)-(2x-5) | | |2z-1|=4 | | 8+5zz=4 | | -57=-y/9 | | -8(2-4f)=-25 | | 6+2(1-9r)=30 | | 0.60x+0.70(60)=0.30(142) | | F(x)=4x+1+2 | | 10.5r-3.8=5.66 | | u/5+16=27 | | r/8=27 | | 2x²+3x-9=0 | | 8x+2=4×-14 | | 8-3x(x-5=2-x(3x-12) | | (2x+3/4)+(x-5)=(x-1/3) | | 14+2y=17 | | 5=(3x+16)/(2) | | 5(2x-3)+4=7x+4 | | -4(3+5n)=-112 | | 2x+3/4+×-5/4=×-1/3 |